SET	В

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 MATHEMATICS - 041

CLASS:X Max.Marks: 80

	MARKING SCHEME						
SET	QN.NO	VALUE POINTS	MARKS SPLIT UP				
	1	(c)8 units					
	2	(b) 10 cm					
	3	(c) 23					
	4	(c) 2×7^2					
	5	(d) 40°					
	6	(a) 3: 1					
	7	(b) -1					
	8	(c) 20					
	9	$(d)\frac{1}{7}$					
	10	(b) 6					
	11	(c) AAA similarity criterion					
	12	(b) 2					
	13	$(c)\frac{12}{13}$					
	14	(a) 240					
	15	(b) 5					
	16	(d) 1.5					
	17	(a) $+3\sqrt{2}$, $-3\sqrt{2}$					

18	(d) 4 cm						
19	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct						
	explanation of assertion (A).						
20	20 (d) Assertion (A) is false but reason(R) is true.						
21	a = 2, b = -4, c = 5	1/					
21	$a - 2, b4, c - 3$ $b^2 - 4ac = -24 < 0$	1/2					
		1/2					
	No real root	,2					
	OR 2 1 1	1+1					
	Roots are $\frac{2}{3}$ and $-\frac{1}{2}$	1+1					
22	Table	1					
	Median = 340	1					
23	HCF = 5	1					
	LCM = 300	1					
24	$S = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$	1/2					
	$P = (3 + \sqrt{2}) \times (3 - \sqrt{2}) = (3)^2 - (\sqrt{2})^2 = 9 - 2 = 7$	1/2					
	Quadratic polynomial = $x^2 - Sx + P = x^2 - 6x + 7$	1					
25	AB = 10 units [Given						
	$AB^2 = 10^2 = 100 \dots$ [Squaring both sides	1					
	$(11-3)^2 + (y+1)^2 = 100$						
	$8^2 + (y+1)^2 = 100$						
	$(y+1)^2 = 100 - 64 = 36$ y + 1 = \pm 6 \dots [Taking square-root on both sides]	1					
	1						
	$y = -1 \pm 6 : y = -7 \text{ or } 5$ OR						
	Area of $\triangle ABC = \frac{1}{2} \times base \times corr$, altitude						
	$=\frac{1}{2}\times 5\times 3=7.5$ sq.units	1					
26	W.1. 62.2.7						
26	We have, $6x^2 - 3 - 7x$ = $6x^2 - 7x - 3$						
	$= 6x^2 - 7x - 3$ = $(2x - 3)(3x + 1)$	1					
	Zeroes are:	1					
	2x - 3 = 0 or $3x + 1 = 0$						
	Therefore $x = 3/2$ or $x = -1/3$	1					
	Verification:						
	Here $a = 6$, $b = -7$, $c = -3$						
	Sum of the zeroes. $(\alpha + \beta) = 3/2 + (-1/3) = (9 - 2)/6 = 7/6$						
	$7/6 = -$ (coefficient of x)/(Coefficient of x^2) = -b/a						
	Product of Zeroes $(\alpha \times \beta) = 3/2 \times (-1/3) = -3/6$						
	-3/6 = Constant term / Coefficient of x ² = c/a	1					
27	Therefore, Relationship holds (i) 1/6 (ii) 1/10 (iii) 1/15	1+1+1					
41	(i)1/6 (ii)1/10 (iii) 1/13 (i)1/4 (ii)1/18 (iii)1/6	- 1 + 1 + 1					
28	Volume of cone (II)1/18	1/2					
	Volume of cylinder	1/2					
	1	1 -=					

		1/
	Volume of hemisphere	1/2
	Total volume	1
	Conclusion	1/2
29	Given: A quadrilateral ABCD which circumscribes a circle. D R C	Fig ½
	Let it touches the circle at P, Q, R and S as shown in figure.	1/2
	To Prove: $AB + CD = AD + BC$	
	Proof: We know that the lengths of the tangents drawn from a point $\mathring{0}$	
	outside the circle to the circle are equal.	
	\therefore AP = AS; BP = BQ; CQ = CR and DR = DS(i)	1
	Consider, $AB + CD = AP + PB + CR + RD$	
	$= AS + BQ + CQ + DS \qquad \qquad \iota \qquad [using (i)]$	1
	= (AS + DS) + (BQ + CQ) = AD + BC	
	OR	
	Given: ABCD is parallelogram circumscribing a circle.	F: 1/
	To prove: ABCD is a rhombus	Fig ½
	Proof: We have, $DR = DS$ (i)	1/2
	[Lengths of tangents drawn from an external point to a circle are equal]	
	()	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1
	Adding (i), (ii), (iii) and (iv), $(PS + SP) + (PS + SP) + (PS + SP)$	
	(DR + CR) + (AP + BP) = (DS + AS) + (BQ + CQ)	1/2
	$\Rightarrow \qquad \text{CD} + \text{AB} = \text{AD} + \text{BC}$	
	A P B	
	⇒ 2AB = 2AD [: In parallelogram, opposite sides are equal	
	AB = CD and AD = BC	
	$\Rightarrow AB = AD$	
	AB = AD = BC = CD	1/2
	Hence, ABCD is a rhombus as all sides are equal in rhombus.	
30	Let the large number be x.	
	Square of the larger number = x^2	
	Square of the small number $= 8x$	1
	$x^2 - 8x = 180$	
	\Rightarrow x = -10 (or) x = 18	
	Larger no = 18	1
	Square of small no=144	
	Small no=12	
	The numbers are 18 and 12	1

31	The total surface area of the solid =Total surface area of the cube+Curved				
	surface area of the hemisphere–Area	1/2			
	$= 6a^2 + 2\pi r^2 - \pi r^2$				
	$= [6 \times 10^2 + 2 \times 3.14 \times 5^2 - 3.14 \times 5^2] \text{ cm}^2$				
	= 600 + 157 - 78.5 = 678.5 cm ²				
	Cost of painting=Rs.5 per 100cm ²				
	∴,Cost of painting the solid= $678.5 \times \frac{5}{100}$ =Rs.33.90				
	Hence, the approximate cost of painting	1/2			
32	Volume of cone is, Volume of cylinder is,				
	$=\frac{1}{3}\pi r^2 h$	$= \pi r^2 h$	1½		
	$=\frac{1}{3}\pi\times660^2\times120$	$= \pi \times 60^2 \times 180$ = $648000\pi \text{cm}^3$	1½		
	$= 14000\pi \text{cm}^3$				
	Volume of hemisphere is,	Volume of water left in cylinde	ris		
	$= \frac{4}{3}\pi r^3 h$	$= \pi r^2 h - \frac{1}{3} \pi r^2 h - \frac{4}{3} \pi r^3 h$	1		
	000	$=(648000-288000)\pi$			
	$=\frac{2}{3}\pi 60^3 h$	$= 360000\pi$			
	$= 144000\pi \text{cm}^3$ $= 1130400\text{cm}^3$				
	OR				

	Radius of the	conical part, r	$r = \frac{5}{2}$ cm.	-5 cm			
Height of the conical part, $h = 6$ cm.							
	Radius of the cylindrical part, $R = \frac{3}{2}$ cm.						
	Height of cylindrical part, $H = (26 - 6)$ cm						
= 20 cm. 26 cm						1	
	Slant height of the conical part, $(5)^{2}$						
	$l = \sqrt{r^2 + h^2} = \sqrt{\left(\frac{5}{2}\right)^2 + 6^2}$ cm						
	Area to be pai					1	
		surface area on the area of the	of the cone cone – base are	ea of the cyl	linder		
	$=\pi rl+\pi r^{2}$	$^2 - \pi R^2 = \pi (rl$	$+r^2-R^2$)				
	= 3.14×($\frac{5}{2} \times \frac{13}{2} + \frac{5}{2} \times \frac{5}{2}$	$\left[\frac{5}{2} - \frac{3}{2} \times \frac{3}{2}\right] $ cm ²	2			
			/_			1	
	= 3.14×($\frac{65}{4} + \frac{25}{9} - \frac{9}{9}$	$cm^2 = (3.14 \times$	$\frac{81}{\text{cm}^2}$			
	L	/-		4)		1	
	= (3.14 × 2 Area to be pai	0.25) cm ² = 60 nted yellow	3.383 cm ⁻ .				
	_	-	f the cylinder	on of the	lindar		
	$=2\pi RH+$	$\pi R^2 = \pi R(2H)$		ea of the cy	iinder		
	= 3.14 × -	$\frac{3}{5} \times \left(2 \times 20 + \frac{3}{5}\right)$	$\frac{3}{5}$ cm ²				
	$= \left[3.14 \times \frac{3}{2} \times \left(2 \times 20 + \frac{3}{2} \right) \right] \text{ cm}^2$ $= \left(3.14 \times \frac{3}{2} \times \frac{83}{2} \right) \text{ cm}^2 = \left(\frac{781.86}{4} \right) \text{ cm}^2$						
	1						
			,				
33	Class interval	Mid-values (x _i)	Frequency (f _i)	$u_i = \frac{x_i - 50}{20}$	$f_i u_i$		
	0–20	10	17	-2	-34		
	20–40	30	f_1	-1	-f ₁		
	40–60	50	32	0	0		
	60–80	70	f_2	1	f_2		
	80–100	90	19	2	38		
	Total		$\Sigma f_i = 68 + f_1 + f_2$		$\Sigma f_i u_i = 4 - f_1 + f_2$		
$f_1 + f_2 = 52(i)$						2	
	Mean = 50						
Therefore, $f_1 - f_2 = 4$ (ii) Solving we get $f_1 = 28$ and $f_2 = 24$						1 1	
OR							

	Index	No. of weeks (f;)	c.f.		
	1500-1600	3	3		
	1600-1700	11 f_0	14		
	1700-1800	$12 f_1$	26		
	1800-1900	7 f ₂	33		
	1900-2000	9	42		
	2000-2100 2100-2200	8 2	50 52		
	2100-2200	$\Sigma f_i = 52$	32		2
	$n = 52, \frac{n}{2} = \frac{52}{2}$				
	∴ Median class	•			
	∴ Median = l +	$\frac{n}{2} - c.f. \times h$			
					1½
		$(00 + \left(\frac{12}{12} \times 100\right))$	= 1800		1/2
	⇒ Modal class i	s 1700–1800			
	$\mathbf{Mode} = l + 1$	$\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times f$	'n		
	= 1700	$) + \frac{12 - 11}{24 - 11 - 7}$	× 100		
	= 171	6.6 or 1716.67	(approx.)		11/2
34	Statement				1
	Proof		2		
	$\frac{AD}{DB} = \frac{AE}{EC}$				1/2
	DB EC				
	$\frac{x}{x+1} = \frac{x+3}{x+5}$		1/2		
					1/
	Simplification		1/ ₂ 1/ ₂		
	x=3				
35	Proof 1 st part				3
26	Proof 2 nd part				2
36	(i)4 units				1
	(ii)(4,2) (iii)Pulkit travels less				2
	OR				2
	(iii) Library				
37	(i)distance = (speed)x	time			1
	(ii) $x^2 + 30x - 400 = 0$				1
	(iii)10 km/hour				2
	OR				
	(iii)1.5 hour				
38	(i)50m				1
	(ii)30m				1
	(iii) 24m				2
	OR				
	(iii)36m				